

Better Postprandial Glucose (PPG) Control with BioChaperone® Combo (BC Combo) than with Lispro Mix25 (LMx) or separate Glargine & Lispro (G+L) Administrations in Subjects with Type 2 Diabetes (T2DM)

Claire Mégret¹, Grégory Me**iffren¹**, Leona Plum-Moerschel², Theresa Herbrand³, Oliver Klein³, Ernestos Anastassiadis², Martin Gaudier¹, Olivier Soula¹, Bertrand Alluis¹, Tim Heise³

Adocia, Lyon, France; ²Profil, Mainz, Germany; ³ Profil, Neuss, Germany

Abstract

BC Combo is a co-formulation of prandial insulin lispro (25%) and basal insulin glargine (75%) with a rapid "prandial" insulin component and prolonged flat "basal" component compared to LisproMix (LMx). In this study the effects of BC Combo on PPG vs. LMx and Glargine + Lantus (G+L) were investigated. Thirty-nine T2DM subjects (mean ± SD age 60.8 ± 7.5 years and HbA1c 8.0 ± 0.6 %) received the three insulin combinations immediately before a standardised solid meal test (MMT, 20% protein 30% fat 50% carbohydrates) in a double-blind, double-dummy, randomised crossover design. The individual insulin dose was the same for each visit day (mean 0.62 U/kg). BC Combo improved early PPG compared to LMx (reduction ΔAUC_{BG_0-2h} of 18%, p=0.0009) and G+L (reduction ΔAUC_{BG_0-2h} of 10%, p=0.0450) (primary endpoint). The proportion of subjects experiencing symptomatic hypoglycaemic events (plasma glucose <70 mg/mL) over 24h was lower with BC Combo demonstrated superior PPG control in T2DM subjects with fewer subjects experiencing symptomatic hypoglycaemia compared to both LMx and separate G+L.

Introduction & Background

- Use of premix insulin formulations like LisproMix (LMx) allows simultaneous administration of short-acting
 and long-acting insulin in one injection which might increase treatment compliance and improve overall
 glycaemic control in patients with type 2 diabetes.
- So far, it has been impossible to design a premix insulin with insulin glargine as basal component due to the reduced solubility of insulin glargine at neutral pH and the impossibility to mix it with prandial insulin.
- BioChaperone® Combo (BC Combo) is an innovative insulin formulation with a BioChaperone® excipient, combining the already approved insulin analogues lispro (25%) as fast-acting component and glargine (75%) as basal component.

Aims of the study

- To compare postprandial glucose (PPG) excursions after a standardised meal between BC Combo and LMx in patients with T2DM.
- To compare postprandial glucose (PPG) excursions after a standardised meal between BC Combo and simultaneous separate injections of glargine and lispro (G+L) in patients with T2DM.
- To assess the pharmacokinetic (PK) exposure of BC Combo, LMx and G+L after administration of a subcutaneous dose.
- To investigate safety and tolerability of BC Combo.

Methods

- Two-centre, randomised, double-blind, double-dummy, 3-treatment, 3-period crossover phase 1 trial.
- o Male or female subjects aged 18 to 70 years (both inclusive) with T2DM ≥12 months, HbA1c between 7 and 9.5% (both inclusive), a body mass index (BMI) between 20 and 40 kg/m² (both inclusive), treated with once daily injections with insulin glargine U-100 or insulin glargine U-300 for at least 3 months prior to screening with a total insulin dose <1.2 U/kg/day and a dose of insulin glargine ≥0.2 U/kg/day were allowed to participate in the trial after having given written informed consent.
- In random order, BC Combo, LMx or G+L were administered over 3 days, separated by a wash-out phase of 5-21 days. PPG excursions and PK were assessed over 6 hours after insulin administrations immediately before standardised solid meals (610 kcal, 50% carbohydrates, 30% fat, 20% protein) on Day 2 and Day 3 of each treatment period

- Prior to the test meals, blood glucose (BG) was stabilised at 110 mg/dl ± 10% with i.v. infusion of insulin glulisine or glucose. These infusions were stopped no later than 30 min before insulin dosing.
- BG levels were monitored at 4-30 minute intervals in the first 5 hours with a final sample taken at 6 hours post-dose.

Statistical Analysis

- For normally or log-normally distributed endpoints, the difference in means between treatments was analysed in a mixed effect linear model with untransformed (ΔBG_{max} , BG_{min} and $AUC_{Tot,0-30min}$) or log-transformed endpoints as response variable, treatment, trial centre, period and sequence as fixed effects and subject within sequence as a random effect. If the trial centre effect was not significant, the analyses were done without trial centre as factor.
- Other PK and PD endpoints, and time in hypoglycaemia and in target range were analysed using the Wilcoxon Signed Rank Test.
- Comparison of the number of hypoglycaemic events between the treatments was performed by frequency analyses using Fisher's Exact Test.
- A two-sided significance level of 5% was used.

Disposition of subjects

Out of 56 subjects screened, 17 were screen failures, 39 were randomised & exposed (Full analysis set), and 36 completed.

Baseline characteristics of the study population

- All subjects were white with 9 (23.1%) females and 30 (76.9%) males.
- The mean age was 60.8 ± 7.5 years (mean \pm SD) with a diabetes duration of 13.4 ± 5.4 years. The BMI was of 31.4 ± 4.1 kg/m². HbA1c at screening was $8.0 \pm 0.64\%$.
- All subjects used once daily injection with insulin glargine, either alone or in combination with insulin lispro (n=9) or insulin glulisine (n=8).

Results

Pharmacokinetics

- BC Combo showed an earlier onset of appearance (Early t_{0.5max}) and higher early PK exposure in the first hour compared with LMx and G+L (Fig. 1a & Table 2).
- o BC Combo reached similar maximum concentrations but significantly earlier than both LMx and G+L.
- After reaching t_{max}, PK-profiles declined more rapidly with BC Combo than with LMx with lower exposure from 2 to 6 hours indicating a faster transition from prandial to basal insulin exposure.
- Total exposure over 6 hours was lower with BC Combo than with LMx or G+L, but as expected PK-exposure was ongoing with all three insulins at the end of the test meal period.

Pharmacodynamics

- BG profiles correlated well with PK profiles.
- o BC Combo significantly reduced mean maximum postprandial blood glucose concentrations and the postprandial glucose excursions over the first 2 hours compared with LMx and G+L (Fig. 1b & Table 1).
- o Mean PPG excursions decreased below baseline with all insulins in the late postprandial phase, but more
 - slowly with BC Combo than with LMx and G+L resulting in lower minimum BG with LMx and G+L. The total area under the BG concentrations curve was similar between the insulins.

Safety

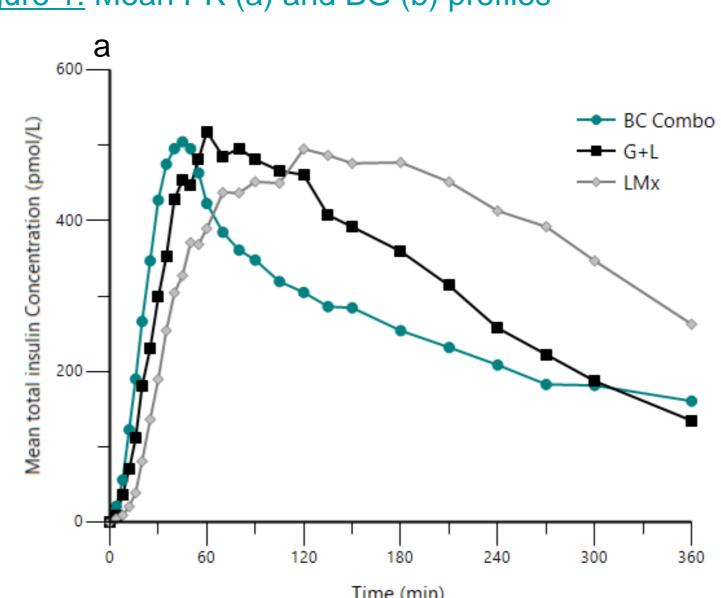

- All insulins were well-tolerated and no differences in Adverse Event rate and local tolerability were seen.
- Hypoglycaemia (defined as plasma glucose <70 mg/mL) occurred most often during the meal test period
 (93 out of 99 events). No event was serious or of severe intensity and all subjects recovered.
- The number of hypoglycaemic events during the test meal period was significantly lower with BC Combo versus LMx (p=0.0028) and tended to be lower versus G+L. Likewise, the number of patients experiencing hypoglycaemia and hypoglycaemia rate were lowest for BC Combo, Table 3).
- Subjects spent significantly (p=0.0384) more time in the pre-defined target range (BG 72-162 mg/dL) and numerically less time in hypoglycaemia after dosing with BC Combo compared with LMx (p=0.1433) (Table 3).

Table 1: Blood glucose parameters (LS-Mean)

Parameter	LS Means			LS Means			
	BC Combo (n=38)	LMx (n=37)	p value	BC Combo (n=38)	G+L (n=37)	p value	
Early prandial phase (0-2h)							
۵AUC _{BG_0-1h} [mg.h/dL]	35.150	43.488	0.0004	35.144	41.137	0.0020	
$\Delta AUC_{BG_{-0-2h}}$ [mg.h/dL]*	108.177	131.551	0.0009	108.396	120.266	0.0450	
∆BG _{1h} [mg/dL]	68.0	84.2	0.0006	68.0	78.4	0.0055	
∆BG _{max} [mg/dL]	79.4	93.6	0.0139	79.4	85.5	0.2346	
Late prandial phase (2-6h)							
∆AUC _{BG_2-6h} [mg.h/dL]	99.846	76.727	0.0928	101.192	69.031	0.0506	
∆BG _{6h} [mg/dL]	-22.8	-33.1	0.0154	-22.7	-26.6	0.2592	
∆BG _{min} [mg/dL]	-27.8	-37.4	0.0017	-27.6	-31.9	0.0628	
BG _{min} [mg/dL]	79.8	70.1	0.0007	80.1	75.2	0.0412	
Total prandial phase (0-6h)							
ΔAUC _{BG,0-6h} [mg h/dL]	208.044	208.442	0.9819	209.585	189.329	0.3015	

BG_{min}: minimum blood glucose concentration, Δ BG_{1h}: blood glucose excursion 1h after the start of the meal

Figure 1: Mean PK (a) and BG (b) profiles



Table 2: Pharmacokinetic parameters (LS-Mean)

	LS Means			LS Means		
Parameter	BC Combo (n=38)	LMx (n=37)	p value	BC Combo (n=38)	G+L (n=37)	p value
AUC _{0-30min} [pmol.h/L]	92.6	28.8	<.0001	92.5	57.8	0.0007
AUC _{0-1h} [pmol.h/L]	281.9	149.3	<.0001	283.7	218.8	0.0022
AUC _{2-6h} [pmol.h/L]	745.1	1312.4	<.0001	746.5	858.3	0.0789
AUC _{0-6h} [pmol.h/L]	1351.7	1878.8	<.0001	1356.8	1559.6	0.0069
C _{max} [pmol/L]	500.9	495.3	0.8537	515.5	533.4	0.5538
t _{max} [h]	0.722	2.228	<.0001	0.731	1.239	<.0001
Early t _{0.5max} [h]	0.351	0.667	<.0001	0.351	0.511	<.0001
p<0.05 in bold						

<u>Table 3:</u> Incidences of hypoglycaemic episodes and time spent in hypoglycaemia and in target range during meal test

	BC Combo (n=38)	LMx (n=37)	G+L (n=37)			
Parameter	N (%) / E					
Overall	15 (39.5) / 24	21 (56.8) / 46	19 (51.4) / 29			
Overall – meal test	14 (36.8) / 22	20 (54.1) / 43	19 (51.4) / 28			
N = number of subjects, % = percentage of subjects, E = number of events						
Parameter	Mean (SD)					
Time in Hypoglycaemia	17.9 (34.06)	26.5 (42.83)	21.2 (37.73)			
Time in Target Range	201.9 (64.93)	183.1 (55.41)	195.7 (70.95)			
Unit: min Hypoglycaemia: BG <63 mg/dL Target range: BG 72-162 mg/dL. Ranges derived from serial blood sampling up to 6 hours after the test meal.						

Conclusions

- BC Combo showed a faster rise in insulin concentrations and a higher early insulin exposure than both Humalog Mix and separate injections of glargine and lispro resulting in improved postprandial control in the first two hours after a test meal.
- Late PK-exposure from 2 to 6 hours was lower with BC Combo which reduced the decline of BG concentrations below baseline and the
 rate of postprandial hypoglycaemia compared to LMx.