Biochaperone[®] Glucagon, A Stable Ready-to-use Liquid Glucagon Formulation Enabled by Biochaperone Technology, is Well Tolerated and Quickly Restores Euglycaemia after Insulin-induced Hypoglycaemia

Aymeric Ranson¹, Cyril Seroussi¹, Ulrike Hövelmann², Daniela Lamers², José Correia¹, Eric Zijlstra², Martin Gaudier¹, Olivier Soula¹, Grégory Meiffren¹, David Duracher¹ (¹Adocia, Lyon, France ; ² Profil, Neuss, Germany)

Introduction & Background

- Human glucagon is approved as an emergency rescue treatment for people with diabetes experiencing severe hypoglycaemia.
- Usability of commercially available emergency kits is limited due to the complexity of the reconstitution and administration process, especially in stressful circumstances.
- BioChaperone[®] Glucagon (BCG) is a stable, ready-to-inject, aqueous formulation of human glucagon for hypoglycaemia rescue therapy enabled by the BioChaperone[®] technology.

Aims of the study

- To assess safety and tolerability of two compositions of BCG (BCG1 and BCG2) and GlucaGen[®] HypoKit[®] (all dosed at 1 mg).
- To compare pharmacodynamic (PD) and pharmacokinetic (PK) properties of BCG1, BCG2 and GlucaGen[®] HypoKit[®].

Methods

- Phase 1, randomised, double-blind, three-period cross over trial.
- Male or female participants with type 1 diabetes (T1DM) were allowed to participate in the trial after having given written informed consent.
- Subjects were fasted and hypoglycaemia was induced with individualized i.v. insulin infusion to reach plasma glucose (PG) levels <60 mg/dL.
- At t=0, single subcutaneous 1 mg dose of BCG1, BCG2 and Glucagen[®] HypoKit[®] on 3 separate dosing visits were administered.
- An individualised constant insulin infusion rate (up to 4x subject's average basal rate; same for all dosing visits) was maintained from -30 to +240 min relative to dosing.
- If PG value ≤ 55 mg/dL within 8-30 min after dosing, an i.v. dose of glucose was administered.

Adverse Events

- GI side effects are the most frequent AEs, and the vast majority of AEs are commonly observed in hypoglycaemia.
- All subjects recovered from AEs.

Table 1: Adverse events

Period	BCG1	BCG2	GlucaGen			
Inpatient	15 AEs in 11 subjects	13 AEs in 8 subjects	6 AEs in 5 subjects			
	10 nausea	8 nausea	5 nausea			
	2 vomiting	1 vomiting	1 vomiting			
	2 headache	1 headache				
	1 vertigo	2 inj site react.				
		1 hyperhydrosis				
Outpatient	5 AE in 4 subjects (2 SAE: Gastroenteritis and troponin T increase /					
-	both unrelated to treatment)					

Hypoglycaemic episodes during dosing visits

- Majority of hypoglycaemic episodes were asymptomatic and occurred more than 2 hours after dosing.
- All subjects recovered from hypoglycaemia.

Table 2: Hypoglycaemic episodes during dosing visits

Treatment	Ν	Mean time (h) ± SD
BCG1	9	2.3 ± 1.71
BCG2	10	2.5 ± 1.42
Glucagen	13	3.0 ± 0.50

Glucose response

- BCG1, BCG2 and Glucagen[®] induce rapid and marked increases in blood glucose levels.
- Blood glucose rise with BCG1 and BCG2 is slightly delayed compared to Glucagen[®].

<u>Figure 3</u>: Mean (\pm SE) plasma glucose profiles

Demographic data

- o 27 subjects with type 1 diabetes (Figure 2)
- 3 withdrawals (1 SAE, 2 personal reasons)

Figure 2: Characteristics of the study population (mean±SD)

Time (min) <u>Table 3</u>: Pharmacodynamic parameters (plasma glucose)

Mean [sd]	BCG1	BCG2	GlucaGen
t _{PG≥70 mg/dL} (min)	11.5 [5.0]	10.0 [3.5]	7.3 [1.8]
ΔPG _{15min} (mg/dL)	29 [17]	36 [16]	47 [11]
ΔPG _{30min} (mg/dL)	69 [29]	77 [29]	87 [22]
N PG _{≥ 70 mg/dL} (% N total)	26/26 (100%)	24/25 (96%)	24/24 (100%)

Conclusions

o BCG1, BCG2 and Glucagen® 1 mg were safe

 BCG1, BCG2 and Glucagen[®] 1 mg induce rapid and marked increases in blood glucose levels after subcutaneous administration.

This study was sponsored by Adocia and performed by Profil NCT trial number: NCT02528396 Presented at the 12th International Conference on Advanced Technologies & Treatments for Diabetes, February 20 – 23, 2019, Berlin, Germany

